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We derive Ward-Takahashi identities for a scalar field theory in the case of translational invariance.
These identities are then generalized to include the case where a linear term in the field breaks this sym-
metry in the action. Using an analogous procedure, we also derive in the framework of liquid-state
theory some well known relations between the direct correlation functions, which are valid also in the
presence of an external potential. These relations are therefore basic, in that they are a consequence of
an invariance property of the system. The so-called Baxter relations for homogeneous fluids are also de-
rived as a consequence; moreover, we investigate another invariance, which is the rotational invariance.

PACS number(s): 61.20.Gy, 11.10.—z, 11.30.—j, 05.20.Gg

I. INTRODUCTION

The notion of symmetry is without any doubt an im-
portant and basic concept in physics. It has proved a
powerful tool in the comprehension of the properties of
many phenomena, such as critical phenomena.

In field theory, one of many consequences of the ex-
istence of symmetries lies in the so called Ward-
Takahashi (WT) identities [1]. It is the aim of this paper
to investigate whether similar relations exist in liquid-
state theory. We shall in particular consider the simple
case of a global symmetry, which is the translational in-
variance. Basic equations in liquid-state theory will be
obtained as a consequence of this symmetry.

Section II will be dedicated to deriving the WT identi-
ties for translational invariance. We first study the case
of a translational invariant action and then show how
these identities still hold when this symmetry is broken
by a term which is linear in the field. In Sec. III we shall
rederive some equations which exist in liquid-state theory
[2,3]. We shall emphasize the necessity to have transla-
tional invariance, in order to obtain these relations which
bare a profound resemblance with the WT identities. In
Sec. IV we shall give an illustration of the importance of
these equations by deriving some relations first obtained
in [4,5], which are sometimes referred to as Baxter rela-
tions for homogeneous fluids, which play a central role in
the theory of critical phenomena [6—8], similar to that of
the WT identities in renormalization procedures. Final-
1y, we investigate the consequences of another invariance
which is the rotational invariance.

II. WARD-TAKAHASHI IDENTITIES

In this section, we derive the WT identities for systems
which are translationally invariant. These relations will
also be shown to hold when this symmetry is broken by a
linear term in the action. Hereafter we shall follow the
presentation given in [1].

Let us consider a Euclidian field theory, where Z [J] is
the generating functional, defined with a d dimensional
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Euclidian action S, [¢], where ¢ is a scalar field. In ad-
dition, we make the hypothesis that this action has a
symmetry, that is, Sy, [¢] is invariant under a space
translation. The generating functional is written

ZoymlJ1= [[d¢]expl —Sym[d1+ [T(x)d(x)d% ] .
(1)

From now on, if it is not necessary for comprehension,
the integral over real space is understood. To study the
consequences of the invariance under a space translation,
we make an infinitesimal change in field Eq. (2a), which
can be interpreted as a infinitesimal translation Eq. (2b),

d(x)=¢'(x)+eVed'(x) (2a)
=¢'(x +e). (2b)

In terms of this field, ¢’, the value of the partition func-
tion Z [J], is not modified, as we have only changed the
dummy integration variable ¢. We can also explicitly
write changes occurring by the substitution of ¢ with the
variable ¢’, and in Eq. (1) we consider the changes in
three terms. (i) The action term is not modified, as by hy-
pothesis it is invariant under a translation:
Syml[® ]1=Sym[¢]; each term in the action is generally a
product of fields or derivatives of the field which are in-
tegrated over the whole space, and no change occurs if
we use Eq. (2b). (i) The integration measure is formally
written using Eq. (2b), II,dé(x)=II,, d¢'(x’') with
x'=x+e. In fact, x’ is a dummy index which does not
interfere with the space integrations in the action or in
the interaction term; therefore, it can be simply renamed
x and no change in the measure occurs. (iii) Finally, only
the interaction term is modified; we use Eq. (2a) which
preserves the locality of the interaction term, and the
field ¢ and J are taken for the same point. This is the
only term which will yield any contribution if we perform
the difference Z [/ ]y —Zym[J]4, calculated respective-
ly with ¢’ and ¢ variables. This difference is zero, as we
have simply changed the integration variable; therefore
we have
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[1de' 1expl —Sqyml[#'1+ [T (x)d
= [[d¢]exp[ —

We thus have
- {f[dd;] [fJ(x)quS(x)ddx]

X exp | —Syml$1+ fJ(x)qS(x)ddx] ]=o, (4)

where we have dropped higher orders in €. Using the
fact that € is arbitrary, the term in brackets is zero,

[1d¢] [fJ(x)quS(x)ddx}

X exp [ =Symld]+ [76]=0. )

Now if we use the identity

[1dg1g(x) exp | —S,,mld]+ qus]
=[8Zyyy[J1/8J(x)],  (6)
we obtain
[ dx J(x)V, [8Z,y[J]/87 (x)]=0 . (7a)

This is one formulation of the WT identities in the case
of translational invariance; it is straightforward to derive
the identities for the generating functional of the connect-
ed Green’s functions, W, [J]=InZ . [J],

[ d% J(x)V, [8W 1 [J1/87 (x)]=0 , (7b)

and for its Legendre transform, which is the one particle
irreducible generating functional 'y, [@], such that

Coyml @]+ WomlJ1= [d% J (x)p(x)
with @(x)=8W,,[J1/8J(x) . (8)
Notice that we use the notation p={¢$). We have
[ d% V., p(x)[8T @] /80(x)]=0 , )
[ d% @(x)V, [6T @] /8p(x)]=0 , (10)

where the second expression is obtained by partial in-
tegration, under the assumption that the test function
@(x) is such that the surface term vanishes.

Generating functionals are usually computed at J =0;
in this case Egs. (7) are trivial, as we consider the gra-
dient of quantities which are homogeneous for this
translational invariant action. However, these equations
have been derived whatever the value of J, and therefore
also for a nonhomogeneous field. It is then possible to ex-
tend the use of Egs. (7) to actions with a linear term in
the field which breaks the translational invariance.

We now suppose that a term linear in the field is in-
cluded in the action [1], for instance a nonuniform poten-
tial ¥ (x). The new action is

Syml®]+ [ 708
Jdix]1— [[dé]expl —Syml]+ [J(x)px)d%]=0. (3

ix]— [ [d]exp[—
Sym[$1+ [T () {$(x) eV $(x)
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x)d % ]

=

f

S[#1=Symld]— [d% V(x)g(x) . (11)

The WT identities should a priori not hold, as the action
is no longer invariant in a space translation. However, it
is easy to see that the generating functionals satisfy

Z[J1=ZyulJ +V] and W[J|=W,[J +V], (12)

where the subscript sym indicates that the functions are
relative to the previous symmetric action. What Eq. (12)
states is that we can reinterpret the nonsymmetric func-
tions as functionals of J, in terms of the previous sym-
metric functions as functionals of a field K =J + V. Ex-
panding the nonsymmetric functions around J =0 is
equivalent to expanding the symmetric functions with
K =V. The equivalent Ward identities for the nonsym-
metric action are obtained from Eq. (7b) for K =J +V

J d% K (x)V, [8W 0 [K1/87 (x)]
= [d% [T+ V)V, [8W I +V]/8] (x)]=

Using Eq. (12), we have

[ d[J +VI(x)V, [8W[J]/8] (x)]=0 . (13a)

Equation (13a) shows that we still have a WT identity for
the nonsymmetric action, with an additional term related
to V. When J is zero, we now have a nontrivial relation
which is

[ d% V(x)V, [8W[J=0]/8](x)]= (13b)

We can also study the behavior of the I'[p] functions.
To obtain a relation between I'[p] and Ty, [p], we com-
pare the Legendre transforms, for both the symmetric
and nonsymmetric action,

Tlpl+W[J1= [d% J(x)p(x)

with @(x)=8W[J]/8J(x), (l4a)
Cyul@l+ Wonld + V1= [ d%[J +V](x)p(x)
with @(x)=8W,[J +V1/8J(x) . (14b)

Using Eq. (12) we have the equation relating I'[¢] to
Cymle],

T[@]=Tymlel— [dix

The T'" n-body functions are usually considered as an ex-
pansion around the mean value ¢, of the field obtained
for J=0. This mean value ¢, for the nonsymmetric
function is

@o(x)=[8W[J =0]/8J (x)]
=[8WymlK =V]/8K (x)], (16)

V(x)p(x) . (15)

which in terms of the I'[p] functions satisfies
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[8T[@o]/8¢(x)]=T"V(x)=0 (17a)
or the equivalent,

[8T [ @01 /80(x) ] =T, (x) =V (x) . (17b)

The WT identity Eq. (7c) of the symmetrical case can be
written for this mean value ¢, which is nontrivial, and a
priori different from zero and nonuniform in space,

[ dx @o(x)V, [T ymlp= o] /8¢(x)]1=0 . (18)

In conclusion, we see that the WT identities (7) can be
transposed to the nonsymmetric action Eq. (11) simply
using relations (12) and (15).

We shall now derive the WT identities for higher order
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correlation functions. According to the previous state-
ment, we shall only treat the case of the symmetric ac-
tion, the generalization of which is trivial and we choose
more specifically the case of the I'[ @] functions. Starting
from Eq. (7d), we can differentiate with respect to 8¢(y),
and we obtain

v, T+ [d% gox)V, T2 (x,9)=0, (19a)
where we have used the notation
" [ ¥ Tumle]
Fsym(xlaxzy--wxn - 8¢7(X1)"'8¢’(xn) ¢:¢0'

With further differentiation with respect to the fields, and
possibly some adequate change in the labels, we obtain

J

S Vi Tgmlxp, ... (19b)

i=1,n

X, )+ fdxn+1<p(n +1)mer;;,:”(xl,..,x,,,x,,+1)=0 .

Let us insist on the fact that when used the nonsymmetric action these equations have to be computed for the field ¢,
defined by Egs. (17), which takes into account the nonuniform field V' (x).

III. CONSEQUENCES OF TRANSLATIONAL INVARIANCE IN LIQUIDS AND WT IDENTITIES

In this section, we study the consequences of translation invariance on the grand partition function, under the hy-
pothesis that the interparticle potential is invariant under a space translation. Some relations between the correlation
functions, previously obtained [2,3], will be rederived; the emphasis will be put on showing the close relation and simi-
larities with the WT identities obtained in Sec. II. In the following we restrict our study to two-body interparticle in-
teractions, without any loss in generality.

For the description of liquids, we can start from the grand partition function

E= 3 (I/N!)fnf\;ldxl exp[ =B <; <NV (X;—%X)+ 2 <, <nv(x,—%0)] , (20)
N=0

where the x; are vectors, B=(kT) "},
y(xi—x0)=k+B,u—dex8(x,~—x)Vext(x—x0)=k+ﬁ,u—[3Vext(xi—xo) 21

is the logarithm of the activity, u is the chemical potential, and A=23In(27rmkT /h?). V,, is some external potential
which can also include the finite size of the system. The x, notation specifies some absolute origin and direction, and
this notation is introduced in what follows to indicate a change in coordinates that is not to be understood as a displace-
ment of the real physical system. In the following, the specifications for the index summations will be dropped unless
some change occurs.

To investigate the consequences of a translation, we perform the following change in the integration variables:
X; =X; —E¢, for the N particles. This is a change of coordinates, like the one performed on the fields in Sec. II, and as it
corresponds to a change in the dummy integration variable it does not modify the value of the partition function =.

As in Sec. II three different changes occur in Eq. (20) if we explicitly replace x; with x; —¢. (i) For the interparticle
term we have V(x;—x;)=V(x;—x;), which shows the covariance of this term with respect to the translation, as a
consequence of the translation invariance. (ii) The change in the measure is simply a change in the origin of the spatial
integration of the N particles, which is trivial. (iii) Finally, according to Eq. (21) the interaction term becomes
v(x; —Xx)=7v(x; —e—X,), where X, is as expected not modified for the real physical field is the same.

As in Sec. II we now take the difference between = expressed, respectively, in terms of the two integration variables
x’ and x. Having changed some dummy integration variable the difference is zero; we therefore have

%(I/N!)fl'[fvzldx} exp[—BEV(x}—x}H—E‘y(x}—xo)]—%(l/N!)fo\;ldx, exp[ BV (x; —x;)+2y(x; —x%()]
= E(I/N!)fﬂfvzldxl exp[ =BV (x; —x;)+ 3y (x; —e—X()]
N
— 3 (1/N) [ 1 dx, exp[ —BEV(x; —x,)+Zy(x;,—x,)]=0 .
N

We thus have
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N
E(I/N‘) 2 fdka'Vk')/k
N k=1
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[ 0, dx, exp[ —BEV (i, j)+Zy(i)] ]=o , 22)

where V(i, )=V (x;—Xx;), y(i)=y(x;—Xg), and we have used y(x; —e—Xy)—y(x; —Xg)= —&'V, 7. The indiscerni-
bility of the particles shows that the sum over k gives N times the same contribution, and dividing by =, Eq. (22) be-

comes

S (N—DE)7 [dx Yy,
N=1

fHZSidxi exp[ =B <;i<j<n V(i) + 2 y()] }:0 .

Inverting the summation over N and integrating over dx,, we have

fdx,vm[ S ((N—1E]7 [T, <,dx; expl =B, <i<; <y Vi, )+ EN 17()] ]=o. 23)
N=1

The term in brackets is simply 8= /8y (1); if we divide by =, we have

Jdx,V,y(1)[8InE/8y(1)]=0,
or the equivalent

[ dxy(1)V,[8InE/8y(1)]=0,

(24a)

(24b)

which is obtained from partial integration and neglecting a surface term. Equation (24b) is the equivalent of the formu-
lation of the WT identities given in Eq. (7b). In this formalism [4,6], we know that the conjugated variable to (1) is
the density p(1). We can define the Legendre transform of InZ,

Tlp)=In=— [dx,p(1)y(1).

(25)

We have used the definition given in [4,6], which differs in sign, with the definition of the Legendre transform given in
Eq. (8). In this context the functions are defined as follows [4]:

S [p]/8p(1)=c(1)=c(1)— Inp(1) (26a)
=—y(1) (26b)

and, for n =2,
8"T[p]/8p(1) - - - Sp(n)=c(1,...,n)=c(l,...,n)+(—1)" "M,<;<,8(x;—x,)/p" (1), 27

where the ¢ (1, ..., n) are the direct correlation functions
defined in the liquid-state theory [10], and c(1, ... ,n) are
defined in [4]. Note that Eq. (26b) is simply a conse-
quence of the Legendre transform. We can now rewrite
Eq. (24a) using p(1)=81n= /8y (1) and Eq. (26b)

J dxp(1)V,[8T[p]/8p(1)]= [ dx,;p(1)V,c(1)=0 .
(28)

Differentiating with respect to §p(2) and interchanging
labels 1 and 2, we obtain

V. {8T[p]/8p(1)}

+ [ dx,p(2)V,{8°T[p]/8p(1)8p(2)} =0,  (292)
or the equivalent
Vic(D)+ [ dx,p(2)V,e(1,2)=0 . (29b)

Equation (29a) is the equivalent of Eq. (19a) for the field
theory, the excess free energy I'[p] defined as Eq. (25) is
independent of any external potential and is therefore
equivalent to I'y,,,[@] in the field theory.

It is more common in liquid-state theory to use the
c(1,...,n) functions which do not include the dirac
function term. Equation (29b) can also be written

Vie(D+ [dx,p(2)V,e(1,2)=0. (29¢)
Taking the gradient of Egq. (26b) with
Viy(1)=—BV,V, (1), we have

Vi Inp(1)+BV ¥, (1)=Vc(1) . (30)

Using Eq. (30), we finally obtain a more standard form
[2,3] of Eq. (29¢c), where a partial integration has been
performed:

Vilnp(1)+BY Vo (1)= [ dx,Vp(2)c(1,2) . (3D

We also give the general form of Eq. (31) for higher or-
der correlation functions c(1,...,n), which is obtained
by further functional differentiation from Eq. (31):

S Vie(l,...,n)
i=1,n

+ [dx, cipn + DV, 1 ie(1, ..., n,n+1)=0. (32)
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This set of relations can be considered as the equivalent
of the WT identities Eq. (19b), in the case of liquids, for
the translational invariance.

IV. BAXTER RELATIONS AND THE STUDY
OF ROTATIONAL INVARIANCE

Related to fundamental properties of the system like
symmetries, the WT identities are crucial relations, and
are constraints that the system must verify, for instance,
in renormalization procedures. In a similar way, the so-
called Baxter relations first obtained in [4] have been
shown to play an essential part in the approach of critical
phenomena [7,8]. Here we will present a derivation of
these relations starting from Eq. (32).

To study the properties of homogeneous fluid, it is pos-
sible to investigate the response of the system for a very
smooth external field to lowest order in this field. The
one-body direct correlation function ¢[1,p] is generally a
function of point 1, and a functional of the density p(x)
over the whole space. In the linear-response framework,
any quantity is reasonably estimated in the homogeneous
system. The spatial dependence of the function then
occurs via the density at the point taken into considera-
tion, which is simply the density; that s,
c[l,p]=c(p(1))=c(1) where c() are simply functions
and no longer functional. In this case Eq. (31) is changed
into

Vic[1,p]1=[dec(p(1))/dp(1)]Vp(1)
= [dx,c(1,2)Vp(2) ,

(33a)
(33b)

where dc(p(1))/dp(1) and c(1,2) are computed for the
homogeneous system. Finally, we can choose the exter-
nal potential in such a way that it gives a uniform density
gradient Vp(1)=Vp over the whole system. This is possi-
ble because there is one-to-one correspondence between
the density and the external potential [9]. We therefore
have

de/dp= [dx,c(1,2) . (34)

This is in fact the first of the so-called Baxter relations;
J
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from Eq. (32) we can obtain the rest of hierarchy. The
sum of gradients which appears in Eq. (32) can be inter-
preted as a global translation. If one performs the
difference c[1',...,n";p]—c[1,...,n;p], where the
points i’ are the points i after an infinitesimal translation
of vector €, we have

c[l'y...,nspl—cl[l,...,n;p]

=[3;-1,Vic[l,...,n;p]le+0(e}) .  (35)

The left hand side in the linear-response framework is
also [dc(1,...,n)/dp]Vp-g, where ¢(1,...,n) is the n-
body direct correlation function in a homogeneous sys-
tem, and Vp is the homogeneous gradient in density.
Equation (32) is now, to first order in €,

[de(1,...,n)/dp]Vp

+ [dx, p(n + 1)V, i1, .., mn+1)=0. (36)

Performing a partial integration on the second term in
Eq. (31) yields

[de(1,...,n)/dp]Vp
— [dx, \Vpln +Dec(1,...,n,n+1)=0. (7

Once more using the fact that we have an homogeneous
gradient in the density, we finally obtain

de(1,...,m)/dp= [dx,;jc(1,...,n+1). (38)

Equation (38) is one of the so called Baxter relations.
These have been shown to be a consequence of Eq. (32)
for homogeneous fluids; this implies that they are also a
consequence of the translational invariance.

We have focused, so far, only on the example of
translational invariance. We shall now briefly investigate
the consequences of rotational invariance, which is
another possible symmetry.

The displacement € used in Eq. (22) for a rotation is
e(x)=058an X x, where 8a is an infinitesimal angle and n a
unitary vector along the rotation axis. Replacing this €
in Eq. (22),

S (/NEEY_, [ dx,8a(nXx)-V, vy [T .dx; exp[ —BEV (i, /) +Zy()]=0, (39)

N

Using the properties of the vector product, the fact that
the relation holds for any direction n and finally the fact
that the particles are identical. Therefore the sum over k
gives N times the same contribution, and we have

[ dxx, XV yp(1)=0. (40)

Using Eq. (26), we can express the relation in terms of ¢
or c functions

fdx,p(l)xlxvlc(l)
= [dx,;p(1)x; X V;[c(1)— Inp(1)]
=0. @1

[

Equation (41) is equivalent to Eq. (31) for the rotational
invariance.

In the specific case of an homogeneous and isotropic
liquid, Eq. (41) also gives the Baxter relations. Taking
the derivative of Eq. (41) with respect to 8p(2), we can
see that the term obtained from Inp(1) does not yield any
contribution, and interchanging labels 1 and 2, we have

x X Ve (D)+ [ dx,p(2)%,X V,e(1,2)=0 . (42)

Using the same external field, which yields a constant
gradient in density, we obtain
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xyde /dp= [ dx,x,p(2)c(1,2) . 43)

The right hand side can be transformed as

[ dxx,p(2)c(1,2)= [ dx,(x,—x))p(2)e (1,2)
+x, [dx,p(2)c(1,2) . (44)

Using the isotropy of the system, c(1,2) is only a func-
tion of the distance |x,—x,|, therefore the first term on
the right-hand side is zero. Comparison of the second
term in Eq. (44) with the left-hand side of Eq. (43) is sim-
ply one of the Baxter relations given in Eq. (34).
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V. CONCLUSION

Given the importance of symmetry in physics, we have
found it interesting to rederive some basic relations in
liquid-state theory, placing the emphasis on invariance
properties. In this paper, we thus find that, also for
liquids, symmetries of the system have consequences
which are fundamental constraints. These relations must
have the same status as the one of the WT identities in
field theory [1]. For instance, the so-called Baxter rela-
tions must play an important part in the study of critical
phenomena, as indicated in some approaches [6-8].

Field theory and statistical mechanics have naturally
been presented in parallel. Although the purpose is not
to investigate relations between these two subjects, it is
interesting to note an example illustrating the existence of
some profound analogies.

[1]1J. Zinn-Justin, Quantum Field Theory and Critical Phe-
nomena (Clarendon, Oxford, 1989).

[2] M. S. Wertheim, J. Chem. Phys. 65, 2377 (1976).

[3]R. A. Lovett, C. Y. Mou, and F. P. Buff, J. Chem. Phys.
65, 570 (1976).

[4]1J. L. Lebowitz and J. K. Percus, Phys. Rev. 122, 1675
(1961); J. L. Lebowitz and J. K. Percus, J. Math. Phys. 4,
117 (1963).

[5] R. J. Baxter, J. Chem. Phys. 41, 553 (1964).

[6] G. Stell, in Phase Transitions and Critical Phenomena,

edited by C. Domb and M. S. Green (Academic, London,
1975) Vol. 5B; G. Stell, Phys. Rev. Lett. 20, 533 (1968);
Phys. Rev. B 1, 2265 (1970).

[71 Q. Zhang and J. P. Badiali, Phys. Rev. Lett. 67, 1598
(1991); Phys. Rev. A 45, 8666 (1992).

[8] D. Di Caprio, Ph. D. thesis, Paris, 1993; D. Di Caprio, J.
P. Badiali, and V. Russier, J. Stat. Phys. 80, 1241 (1995).

[9] R. Evans, Adv. Phys. 28, 143 (1979).

[10]J. P. Hansen and I. R. McDonald, Theory of Simple

Liquids (Academic, New York, 1986).



